Mark Scheme 4727 January 2007

physicsandmathstutor.com

1 (i) Attempt to show no closure $3 \times 3=1,5 \times 5=1$ OR $7 \times 7=1$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	For showing operation table or otherwise For a convincing reason
OR Attempt to show no identity Show $a \times e=a$ has no solution	M1 $\text { A1 } 2$	For attempt to find identity $O R$ for showing operation table For showing identity is not 3 , not 5 , and not 7 by reference to operation table or otherwise
(ii) $(a=) 1$	B1 1	For value of a stated
(iii) EITHER: $\left\{e, r, r^{2}, r^{3}\right\}$ is cyclic, (ii) group is not cyclic	B1*	For a pair of correct statements
OR: $\left\{e, r, r^{2}, r^{3}\right\}$ has 2 self-inverse elements, (ii) group has 4 self-inverse elements	B1*	For a pair of correct statements
OR: $\left\{e, r, r^{2}, r^{3}\right\}$ has 1 element of order 2 (ii) group has 3 elements of order 2	B1*	For a pair of correct statements
OR: $\left\{e, r, r^{2}, r^{3}\right\}$ has element(s) of order 4 (ii) group has no element of order 4	B1*	For a pair of correct statements
Not isomorphic	$\begin{gathered} \begin{array}{l} \text { B1 } \\ \text { (dep*) } \\ 2 \end{array} \\ 5 \end{gathered}$	For correct conclusion
2 EITHER: [3, 1, -2] $\times[1,5,4]$ $\Rightarrow \mathbf{b}=k[1,-1,1]$ e.g. put x OR y OR $z=0$ and solve 2 equations in 2 unknowns Obtain [0, 2, -1] OR [2, 0, 1] OR [1, 1, 0]	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	For attempt to find vector product of both normals For correct vector identified with \mathbf{b} For giving a value to one variable For solving the equations in the other variables For a correct vector identified with a
OR: Solve $3 x+y-2 z=4, x+5 y+4 z=6$ e.g. $y+z=1 O R x-z=1 O R \quad x+y=2$ Put x OR y OR $z=t$ $[x, y, z]=[t, 2-t,-1+t]$ OR $[2-t, t, 1-t]$ OR $[1+t, 1-t, t]$ Obtain [0, 2, -1] OR [2, 0, 1] OR $[1,1,0]$ Obtain $k[1,-1,1]$	M1 M1 M1 A1 A1 5 5	For eliminating one variable between 2 equations For solving in terms of a parameter For obtaining a parametric solution for x, y, z For a correct vector identified with a For correct vector identified with \mathbf{b}
3 $\begin{aligned} & z=\frac{6 \pm \sqrt{36-144}}{2} \\ & z=3 \pm 3 \sqrt{3} i \\ & \text { Obtain }(r=) 6 \\ & \text { Obtain }(\theta=) \frac{1}{3} \pi \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	For using quadratic equation formula or completing the square For obtaining cartesian values AEF For correct modulus For correct argument
(ii) EITHER: 6^{-3} OR $\frac{1}{216}$ seen $\begin{aligned} & Z^{-3}=6^{-3}(\cos (-\pi) \pm i \sin (-\pi)) \\ & \text { Obtain }-\frac{1}{216} \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \sqrt{ } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	f.t. from their r^{-3} For using de Moivre with $n= \pm 3$ For correct value
OR: $z^{3}=6 z^{2}-36 z=6(6 z-36)-36 z$ 216 seen Obtain $-\frac{1}{216}$	M1 B1 A1 3 7	For using equation to find z^{3} Ignore any remaining z terms For correct value

$\begin{aligned} & 4 \text { (i) } \begin{array}{l} (y=x z \Rightarrow) \frac{\mathrm{d} y}{\mathrm{~d} x}=x \frac{\mathrm{~d} z}{\mathrm{~d} x}+z \\ x \frac{\mathrm{~d} z}{\mathrm{~d} x}+z=\frac{x^{2}\left(1-z^{2}\right)}{x^{2} z}=\frac{1}{z}-z \\ x \frac{\mathrm{~d} z}{\mathrm{~d} x}=\frac{1}{z}-2 z=\frac{1-2 z^{2}}{z} \end{array} .=\frac{1}{z} \end{aligned}$	B1 M1 A1 3	For a correct statement For substituting into differential equation and attempting to simplify to a variables separable form For correct equation AG
$\text { (ii) } \begin{gathered} \int \frac{z}{1-2 z^{2}} \mathrm{~d} z=\int \frac{1}{x} \mathrm{~d} x \Rightarrow-\frac{1}{4} \ln \left(1-2 z^{2}\right)=\ln c x \\ 1-2 z^{2}=(c x)^{-4} \\ \frac{x^{2}-2 y^{2}}{x^{2}}=\frac{c^{-4}}{x^{4}} \\ x^{2}\left(x^{2}-2 y^{2}\right)=k \end{gathered}$	M1 M1* A1 A1 $\sqrt{ }$ M1 (dep*) A1 6	For separating variables and writing integrals For integrating both sides to ln forms For correct result (c not required here) For exponentiating their In equation including a constant (this may follow the next M1) For substituting $z=\frac{y}{x}$ For correct solution properly obtained, including dealing with any necessary change of constant to k as given AG
$\begin{aligned} & 5 \text { (i) (a) } e, p, p^{2} \\ & \text { (b) } e, q, q^{2} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } 2 \end{aligned}$	For correct elements For correct elements SR If the answers to parts (i) and (iv) are reversed, full credit may be earned for both parts
$\begin{aligned} & \text { (ii) } p^{3}=q^{3}=e \Rightarrow(p q)^{3}=p^{3} q^{3}=e \\ & \Rightarrow \text { order } 3 \\ & \left(p q^{2}\right)^{3}=p^{3} q^{6}=p^{3}\left(q^{3}\right)^{2}=e \Rightarrow \text { order } 3 \end{aligned}$	M1 A1 A1 3	For finding $(p q)^{3}$ or $\left(p q^{2}\right)^{3}$ For correct order For correct order SR For answer(s) only allow B1 for either or both
(iii) 3	B1 1	For correct order and no others
(iv) $e, p q, p^{2} q^{2}$ OR e, $p q,(p q)^{2}$ $e, p q^{2}, p^{2} q$ OR $e, p q^{2},\left(p q^{2}\right)^{2}$ OR e, $p^{2} q,\left(p^{2} q\right)^{2}$	B1 B1 B1 B1 4 10	For stating e and either $p q$ or $p^{2} q^{2}$ For all 3 elements and no more For stating e and either $p q^{2}$ or $p^{2} q$ For all 3 elements and no more

6 (i) (CF $m=-3 \Rightarrow) \mathrm{Ae}^{-3 x}$	B1 1	For correct CF
(ii) $(y=) p x+q$	B1	For stating linear form for PI (may be implied)
$\Rightarrow p+3(p x+q)=2 x+1$	M1	For substituting PI into DE (needs y and $\frac{\mathrm{d} y}{\mathrm{~d} x}$)
$\Rightarrow p=\frac{2}{3}, \quad q=\frac{1}{9}$	A1 A1	For correct values
\Rightarrow GS $y=A \mathrm{e}^{-3 x}+\frac{2}{3} x+\frac{1}{9}$	A1 $\sqrt{ }$	For correct GS. f.t. from their CF + PI
		SR Integrating factor method may be used, but CF must be stated somewhere to earn the mark in (i)
I.F. $\mathrm{e}^{3 x} \Rightarrow \frac{\mathrm{~d}}{\mathrm{~d} x}\left(y \mathrm{e}^{3 x}\right)=(2 x+1) \mathrm{e}^{3 x}$		For stating integrating factor
$\Rightarrow y \mathrm{e}^{3 x}=\frac{1}{3} \mathrm{e}^{3 x}(2 x+1)-\int \frac{2}{3} \mathrm{e}^{3 x} \mathrm{~d} x$	M1	For attempt at integrating by parts the right way round
$\Rightarrow y \mathrm{e}^{3 x}=\frac{2}{3} x \mathrm{e}^{3 x}+\frac{1}{3} \mathrm{e}^{3 x}-\frac{2}{9} \mathrm{e}^{3 x}+A$	A2 *	For correct integration, including constant Award A1 for any 2 algebraic terms correct
\Rightarrow GS $y=A \mathrm{e}^{-3 x}+\frac{2}{3} x+\frac{1}{9}$	A1 $\sqrt{ } 5$	For correct GS. f.t. from their * with constant
(iii) EITHER $\frac{\mathrm{d} y}{\mathrm{~d} x}=-3 A \mathrm{e}^{-3 x}+\frac{2}{3}$	M1	For differentiating their GS
$\Rightarrow-3 A+\frac{2}{3}=0$	M1	For putting $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $x=0$
$y=\frac{2}{9} \mathrm{e}^{-3 x}+\frac{2}{3} x+\frac{1}{9}$	A1	For correct solution
$O R \frac{\mathrm{~d} y}{\mathrm{~d} x}=0, x=0 \Rightarrow 3 y=1$		For using original DE with $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and $x=0$ to find y
$\Rightarrow \frac{1}{3}=A+\frac{1}{9}$	M1	For using their GS with y and $x=0$ to find A
$y=\frac{2}{9} \mathrm{e}^{-3 x}+\frac{2}{3} x+\frac{1}{9}$	A1 3	For correct solution
(iv) $y=\frac{2}{3} x+\frac{1}{9}$	$\begin{gathered} \mathrm{B}^{\mathrm{B}} \sqrt{ } 1 \\ 10 \\ 10 \end{gathered}$	For correct function. f.t. from linear part of (iii)

7 (i) EITHER: (AG is $\mathbf{r}=)[6,4,8]+t k[1,0,1]$ or $[3,4,5]+t k[1,0,1]$ Normal to $B C D$ is $\mathbf{n}=k[1,1,-3]$ Equation of $B C D$ is $\mathbf{r} .[1,1,-3]=-6$ Intersect at $(6+t)+4+(-3)(8+t)=-6$ $t=-4(t=-1$ using $[3,4,5]) \Rightarrow \mathbf{O M}=[2,4,4]$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	For a correct equation For finding vector product of any two of $\pm[1,-4,-1], \pm[2,1,1], \pm[1,5,2]$ For correct \mathbf{n} For correct equation (or in cartesian form) For substituting point on $A G$ into plane For correct position vector of M AG
$\begin{aligned} & \text { OR: }(\mathbf{A G} \text { is } \mathbf{r}=)[6,4,8]+t k[1,0,1] \\ & \text { or }[3,4,5]+t k[1,0,1] \\ & \mathbf{r}=\mathbf{u}+\lambda \mathbf{v}+\mu \mathbf{w} \text {, where } \\ & \mathbf{u}=[2,1,3] \text { or }[1,5,4] \text { or }[3,6,5] \\ & \mathbf{v}, \mathbf{w}=\text { two of }[1,-4,-1],[1,5,2],[2,1,1] \\ &(x=) 6+t=2+\lambda+\mu \\ & \text { e.g. }(y=) 4=1-4 \lambda+5 \mu \\ &(z=) 8+t=3-\lambda+2 \mu \\ & t=-4 \text { or } \lambda=-\frac{1}{3}, \mu=\frac{1}{3} \\ & \Rightarrow \mathbf{O M}=[2,4,4] \end{aligned}$	B1 M1 A1 M1 A1 A1 6	For a correct equation For a correct parametric equation of $B C D$ For forming 3 equations in t, λ, μ from line and plane, and attempting to solve them For correct value of t or λ, μ For correct position vector of M AG
(ii) $\left.\begin{array}{l} A, G, M \text { have } t=0,-3,-4 \quad \text { OR } \\ A G=3 \sqrt{2}, A M=4 \sqrt{2} \quad O R \\ \mathbf{A G}=[-3,0,-3], \mathbf{A M}=[-4,0,-4] \end{array}\right\} \Rightarrow A G: A M=3: 4$	B1 1	For correct ratio AEF
$\text { (iii) } \begin{aligned} \mathbf{O P} & =\mathbf{O C}+\frac{4}{3} \mathbf{C G} \\ & =\left[\frac{11}{3}, \frac{11}{3}, \frac{16}{3}\right] \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$	For using given ratio to find position vector of P For correct vector
(iv) EITHER: Normal to $A B D$ is $\mathbf{n}=k[19,3,-17]$ Equation of $A B D$ is $\mathbf{r} .[19,3,-17]=-10$ 19. $\frac{11}{3}+3 \cdot \frac{11}{3}-17 \cdot \frac{16}{3}=-10$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	For finding vector product of any two of $\pm[4,3,5], \pm[1,5,2], \pm[3,-2,3]$ For correct \mathbf{n} For finding equation (or in cartesian form) For verifying that P satisfies equation
$O R$: Equation of $A B D$ is $\begin{aligned} & \mathbf{r}=[6,4,8]+\lambda[4,3,5]+\mu[1,5,2] \text { (etc.) } \\ & {\left[\frac{11}{3}, \frac{11}{3}, \frac{16}{3}\right]=[6,4,8]+\lambda[4,3,5]+\mu[1,5,2]} \\ & \lambda=-\frac{2}{3}, \quad \mu=\frac{1}{3} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	For finding equation in parametric form For substituting P and solving 2 equations for λ, μ For correct λ, μ For verifying 3rd equation is satisfied
$\begin{aligned} & \text { OR: } \quad \mathbf{A P}=\left[-\frac{7}{3},-\frac{1}{3},-\frac{8}{3}\right] \\ & \quad \mathbf{A B}=[-4,-3,-5], \mathbf{A D}=[-3,2,-3] \\ & \Rightarrow \mathbf{A B}+\mathbf{A D}=[-7,-1,-8] \\ & \Rightarrow \mathbf{A P}=\frac{1}{3}(\mathbf{A B}+\mathbf{A D}) \end{aligned}$	M1 A1 M1 A1 4 13	For finding 3 relevant vectors in plane $A B D P$ For correct AP or BP or DP For finding $\mathbf{A B}, \mathbf{A D}$ or $\mathbf{B A}, \mathbf{B D}$ or $\mathbf{D B}, \mathbf{D A}$ For verifying linear relationship

8 (i) $\cos 4 \theta+i \sin 4 \theta=$ $\begin{aligned} & c^{4}+4 \mathrm{i} c^{3} s-6 c^{2} s^{2}-4 \mathrm{i} c s^{3}+s^{4} \\ & \Rightarrow \sin 4 \theta=4 c^{3} s-4 c s^{3} \\ & \text { and } \cos 4 \theta=c^{4}-6 c^{2} s^{2}+s^{4} \\ & \Rightarrow \tan 4 \theta=\frac{4 \tan \theta-4 \tan ^{3} \theta}{1-6 \tan ^{2} \theta+\tan ^{4} \theta} \end{aligned}$	M1 A1 M1 A1 4	For using de Moivre with $n=4$ For both expressions For expressing $\frac{\sin 4 \theta}{\cos 4 \theta}$ in terms of c and s For simplifying to correct expression
(ii) $\cot 4 \theta=\frac{\cot ^{4} \theta-6 \cot ^{2} \theta+1}{4 \cot ^{3} \theta-4 \cot \theta}$	B1 1	For inverting (i) and using $\cot \theta=\frac{1}{\tan \theta}$ or $\tan \theta=\frac{1}{\cot \theta}$. AG
(iii) $\cot 4 \theta=0$ Put $x=\cot ^{2} \theta$ $\theta=\frac{1}{8} \pi \Rightarrow x^{2}-6 x+1=0$ OR $\quad x^{2}-6 x+1=0 \Rightarrow \theta=\frac{1}{8} \pi$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } 3 \end{aligned}$	For putting $\cot 4 \theta=0$ (can be awarded in (iv) if not earned here) For putting $x=\cot ^{2} \theta$ in the numerator of (ii) For deducing quadratic from (ii) and $\theta=\frac{1}{8} \pi$ OR For deducing $\theta=\frac{1}{8} \pi$ from (ii) and quadratic
$\begin{aligned} & \text { (iv) } 4 \theta=\frac{3}{2} \pi O R \frac{1}{2}(2 n+1) \pi \\ & \text { 2nd root is } x=\cot ^{2}\left(\frac{3}{8} \pi\right) \\ & \Rightarrow \cot ^{2}\left(\frac{1}{8} \pi\right)+\cot ^{2}\left(\frac{3}{8} \pi\right)=6 \\ & \Rightarrow \operatorname{cosec}^{2}\left(\frac{1}{8} \pi\right)+\operatorname{cosec}^{2}\left(\frac{3}{8} \pi\right)=8 \end{aligned}$	M1 A1 M1 M1 A1 5 13	For attempting to find another value of θ For the other root of the quadratic For using sum of roots of quadratic For using $\cot ^{2} \theta+1=\operatorname{cosec}^{2} \theta$ For correct value

